一文读懂芯片上的核心材料

治疗白癜风的土方 http://m.39.net/pf/a_4475491.html

1.前言

元宇宙(Metaverse),一个充满想象力却又不算新鲜的概念,在那个充斥着数据的世界里,我们可以上学、工作、科研、交易,做着任何我们想做的事情。

构想中的元宇宙世界

然而建造这样一个世界,需要一个强大的东西来支持数据的处理工作,它就是芯片,毫不夸张的说,芯片就是“元宇宙之基石”。#你理解的元宇宙#

用于构建元宇宙世界的GPU

2.什么是芯片?

通俗点来说,芯片就是把一个电路所需的晶体管和其他器件制作在一块半导体上。通常情况下半导体所应用到的材料就是单晶硅(MonocrystallineSilicon),如果要制造用于处理元宇宙数据的高性能芯片,那么单晶硅的纯度需要达到99.%以上。如图所示,芯片最初的材料便是这一块一块的单晶硅硅锭了。

生产芯片的原料——单晶硅硅锭

我们不可能在这么大的硅锭上制作芯片,于是晶圆厂将硅锭按照要求裁切成一个一个的圆片,图中那个大大的圆片便是我们说的晶圆(Wafer),而放大的部分里面包含着复杂的线路图,这些独立的结构单元称为chips,在某些场合下,芯片也指代chips。

晶圆以及圆上的chips

3.芯片的制造工艺

在半导体界有这么一种说法,“如果将制造核弹的难度设定为1,那么制造芯片的难度可能是,制造高性能芯片的难度可能是00。”为什么这么说呢?我们首先来看一张制造芯片的流程简图:

芯片制造流程

是不是已经被吓到了?注意,这还是一张简图,实际上芯片制造分为前道工艺和后道工艺,每一段工艺又分为几十甚至上百道工序,中间只要一个环节走不通,那都是半途而废。最后,为了让大家能看得清楚一些,笔者将上述的图再简化如下所示:

芯片制造简图

通过上述的图片,我们已经初步了解了制造一枚芯片的流程,芯片制造的困难不仅仅包括设备,同时也包括材料方面的问题。接下来,笔者分别介绍芯片制造中所用到的重要材料。

4.单晶硅,制备芯片结构的衬底

没有高纯度的单晶硅,就不要提芯片,更不用说构建一个元宇宙的虚拟世界了。作为地球上第二丰度的元素,硅广泛地存在于自然界当中。它成本低廉,温度稳定性好,穿透电流低,如此优异的性能使它代替锗,成为了半导体的主流材料。

单质硅主要有单晶、多晶以及非晶硅三类形态,后两种形态缺陷太多,若用于芯片制造,在加工过程中会引起基材的电学以及力学性能变差,因此只能用高纯的单晶硅作为芯片的基元材料。

硅单质的三种形态

然而自然界中别说单晶硅,就连硅单质也是不存在的,硅元素主要以硅酸盐以及硅的氧化物形式存在,想从原料中获取单晶硅并不是一个简单的过程,要经过西门子法提纯以及CZ法制备单晶硅两大步骤,这两大步骤具体包括:二氧化硅原料→金属硅→HCl提纯→氢气还原→多晶硅→熔融→拉制单晶硅→切片。

首先,利用焦炭,在℃的条件下,将二氧化硅原料还原成金属硅,此时的金属硅纯度仅仅为97%,具有杂质;随后,利用氯化氢(HCl)在℃的低温下将金属硅变为三氯硅烷,而氯化氢也会将金属硅中的杂质溶解,由于杂质和三氯硅烷蒸汽压较大的差异,此时,杂质的氯化物会受热蒸发,硅的纯度得到进一步提高。

接下来,利用高纯度氢气将高纯度的三氯硅烷通入炉中,在1℃的高温下,炉子内部的硅芯棒上会逐渐长出多晶硅晶体,此时多晶硅的纯度可达99.%。

西门子法制备高纯多晶硅

最后一步便是利用多晶硅制备单晶硅,首先将多晶硅加热熔化,随后加入单晶硅的籽晶(Seed),触碰多晶硅的熔体,此时界面处的硅便会沿着同一个晶面方向生长,通过调控合适的工艺参数,便可得到硅单晶棒。

CZ法制备单晶硅流程

单晶硅硅棒经过打磨,抛光,外延,切片等工艺,就形成晶圆了。不过别急,这只是做芯片的第一步。

5.光刻胶,转印芯片电路的媒介

当制备好的晶圆经过氧化处理后,便进入了芯片前道工艺的光刻工序,大家应该都知道光刻机,如果将光刻机比作芯片行业的引擎,那么光刻胶就是助推引擎的燃料。

光刻流程简图

光刻胶就是图中橙色的部分,也有人将其称为光阻剂。光刻胶分为正胶和负胶,正胶经过曝光后会溶解于显影液,负胶则是相反的。

按照曝光光源的波长分类,光刻胶分为g线,i线,KrF,ArF以及EUV光刻胶,由左到右,光刻胶对应的曝光波长逐渐变短,先进的EUV光刻胶对应曝光波长只有13.5nm,可用于10nm以下的芯片制程,但目前EUV光刻机只有荷兰ASML能制造。

光刻胶分类

光刻胶的组分一直是国外厂商的机密,很难通过逆向解析的手段还原。一般而言,光刻胶的组分包括光引发剂,树脂基体,单体以及助剂。当光刻胶经过紫外光照射后,发生一系列的物理化学变化,电路图形就从掩膜版上转移到光刻胶上面,经过刻蚀后,晶圆片上就形成了对应的图案。

光刻胶反应机理简图

我国目前28nm工艺制程使用的光刻胶为KrF型号,目前正在积极开发ArF型光刻胶,而更为高端的产品已经被美国与日本所垄断。

6.成膜,分隔芯片结构的骨架

经过刻蚀,我们已经得到了芯片的基本平面形貌,为了防止各个器件之间的干扰,同时赋予芯片三维结构,我们就需要薄膜(<1μm)沉积工艺。

芯片薄膜沉积工艺

薄膜沉积工艺分为化学气相沉积(CVD)以及物理气相沉积(PVD)两种方式。

典型的CVD工艺是将晶圆(基底)暴露在一种或多种不同的前驱物下,在基底表面发生化学反应或化学分解来产生所需的沉积薄膜。CVD的基本流程如图所示:

CVD基本流程

上述的流程包括反应物传输,先驱体反应,气体扩散,衬底吸附,CVD主要用在芯片的氮化层成膜。

而PVD的方式包括蒸镀与溅射,主要用于芯片的金属层,目前多用离子溅射的方式成膜。离子溅射的基本原理是通过气体等离子轰击靶材,将靶材原子“打”出来,并使它沉积在衬底上成膜。

PVD基本流程

7.封装,连接芯片电路的外衣

封装属于后道工艺,但也是至关重要的一步。芯片封装是半导体开发的最后一个阶段,不仅仅是为了保护芯片的内部结构和提高芯片的性能,更是为芯片内部结构与外部电路建立了一道沟通的桥梁。

2.5D芯片封装工艺

芯片的封装材料主要包括封装基板、引线框架、键合丝、塑封料等四类材料。这四类材料的市场份额在芯片封装材料里占70%以上。

封装材料市场占有率

封装基板是芯片的内外承载和保护结构。对于高端芯片,会选择环氧树脂,聚苯醚树脂,聚酰亚胺树脂作为基板材料,相比于金属基板和陶瓷基板,有机基板具有密度小,生产成本低以及加工简单的优势。

而引线框架则是连接内外电路的媒介,它需要较高的导电导热性能,一定的机械强度,良好的热匹配性能,同时环境稳定性要好。一般采用铜基引线框架材料。

键合丝是芯片内部与引线框架的内引线,对于高端产品而言,要求化学稳定性和导电率更高,因此高端芯片一般采用键合金丝作为键合材料,但是缺点是成本过高,因此在一些较为低端的产品,一般用键合银丝以及键合铜丝。

塑封料则是对芯片和引线架构起保护作用。塑封料有金属,陶瓷,高分子塑封料三种方式。相比于前两者,高分子环氧塑封具有低成本,小体积,低密度等优点,目前绝大多数的集成电路都采用高分子环氧塑封。

封装材料示意图

8.展望

在经过封装测试之后的其它工艺,一枚小小的芯片就这么诞生了。强大的算力是支持元宇宙运行的基础,根据半导体的摩尔定律:

集成电路上可以容纳的晶体管数目在大约每经过18个月到24个月便会增加一倍。换言之,处理器的性能大约每两年翻一倍,同时价格下降为之前的一半。

但是随着芯片制成的不断缩小,甚至到现在网传的1.4nm,摩尔定律的适用性在面临挑战。那么,我们不禁要问,能否在原材料上有所突破呢?答案是肯定的,科学家们曾经说石墨烯是下一代芯片材料,但是石墨烯的量产与提纯又是一大问题。近期,科学家们发现二维二硫化钼这种新型半导体:

二硫化钼结构图

相比于单晶硅,它具有的优势:

没有单晶硅表面的“悬挂键”,性能比单晶硅更稳定;

很薄,单层的二硫化钼只有6.5埃的厚度,比现在的3nm制程小了5倍,芯片的制程可以进一步缩小,获得更高的算力;

若能批产,可以减少芯片的制作流程。

但是,需要说明的是,作为一种二维材料,它与石墨烯一样很难稳定批产,这就需要材料学家进一步去探索新的制备工艺和新的合成方法了,希望那一天能够早日到来。




转载请注明:http://www.180woai.com/afhzz/3472.html


冀ICP备2021022604号-10

当前时间: