7号元素氮的知识分享

氮气在大气中虽多于氧气,由于它的性质不活泼,所以人们在认识氧气之后才认识氮气的。不过它的发现却早于氧气。年英国化学家布拉克(Black,J.-)发现碳酸气之后不久,发现木炭在玻璃罩内燃烧后所生成的碳酸气,即使用苛性钾溶液吸收后仍然有较大量的空气剩下来。后来他的学生D·卢瑟福继续用动物做实验,把老鼠放进封闭的玻璃罩里直至其死后,发现玻璃罩中空气体积减少1/10;若将剩余的气体再用苛性钾溶液吸收,则会继续减少1/11的体积。D·卢瑟福发现老鼠不能生存的空气里燃烧蜡烛,仍然可以见到微弱的烛光;待蜡烛熄灭后,往其中放入少量的磷,磷仍能燃烧一会,对除掉空气中的助燃气来说,效果是好的。把磷燃烧后剩余的气体进行研究,D·卢瑟福发现这气体不能维持生命,具有灭火性质,也不溶于苛性钾溶液,因此命名为浊气或毒气。在同一年,普利斯特里作类似的燃烧实验,发现使1/5的空气变为碳酸气,用石灰水吸收后的气体不助燃也不助呼吸。由于他同D·卢瑟福都是深信燃素学说的,因此他们把剩下来的气体叫做被燃素饱和了的空气。

氮气在常况下是一种无色无味的气体,占空气体积分数约78%(氧气约21%),1体积水中大约只溶解0.02体积的氮气。氮气是难液化的气体。氮气在极低温下会液化成无色液体,进一步降低温度时,更会形成白色晶状固体。在生产中,通常采用黑色钢瓶盛放氮气。

由氮元素的氧化态-吉布斯自由能图也可以看出,除了NH4离子外,氧化数为0的N2分子在图中曲线的最低点,这表明相对于其它氧化数的氮的化合物来讲的话,N2是热力学稳定状态结构。氧化数为0到+5之间的各种氮的化合物的值都位于HNO3和N2两点的连线(图中的虚线)的上方。因此,这些化合物在热力学上是不稳定的,容易发生歧化反应。唯一的一个比N2分子值低的是NH4离子。

正价氮呈酸性,负价氮呈碱性。

由氮分子中三键键能很大,不容易被破坏,因此其化学性质十分稳定,只有在高温高压并有催化剂存在的条件下,氮气可以和氢气反应生成氨。同时,由于氮分子N2的化学结构比较稳定,氰根离子CN和碳化钙CaC2中的C2和氮分子结构相似。

氮主要用于合成氨,反应式为N+3H2NH(条件为高压,高温、和催化剂。反应为可逆反应)还是合成纤维(锦纶、腈纶),合成树脂,合成橡胶等的重要原料。氮是一种营养元素还可以用来制作化肥。例如:NHHCO,NHCl,NHNO等等。

由于氮的化学惰性,常用作保护气体,如:瓜果,食品,灯泡填充气。以防止某些物体暴露于空气时被氧所氧化,用氮气填充粮仓,可使粮食不霉烂、不发芽,长期保存。液氮还可用作深度冷冻剂。医院做除斑,包,豆等的手术时常常也使用,即将斑,包,豆等冻掉,但是容易出现疤痕,并不建议使用。高纯氮气用作色谱仪等仪器的载气。用作铜管的光亮退火保护气体。跟高纯氦气、高纯二氧化碳一起用作激光切割机的激光气体。氮气也作为食品保鲜保护气体的用途。在化工行业,氮气主要用作保护气体、置换气体、洗涤气体、安全保障气体。用作铝制品、铝型材加工,铝薄轧制等保护气体。用作回流焊和波峰焊配套的保护气体,提高焊接质量。用作浮法玻璃生产过程中的保护气体,防锡槽氧化。

由于单质N2在常况下异常稳定,人们常误认为氮是一种化学性质不活泼的元素。实际上相反,元素氮有很高的化学活性。N的电负性(3.04)仅次于F、O、Cl和Br,说明它能和其它元素形成较强的键。另外单质N2分子的稳定性恰好说明N原子的活泼性。问题是目前人们还没有找到在常温常压下能使N2分子活化的最佳条件。但在自然界中,植物根瘤上的一些细菌却能够在常温常压的低能量条件下,把空气中的N转化为氮化合物,作为肥料供作物生长使用。所以固氮的研究一直是一个重要的科学研究课题。因此我们有必要详细了解氮的成键特性和价键结构。

氮气分子中对成键有贡献的是三对电子,即形成两个π键和一个σ键。对成键没有贡献,成键与反键能量近似抵消,它们相当于孤电子对。由于N2分子中存在叁键N≡N,所以N2分子具有很大的稳定性,将它分解为原子需要吸收.69kJ/mol的能量。N2分子是已知的双原子分子中最稳定的,氮气的相对分子质量是28。氮气通常不易燃烧且不支持燃烧。化学式为N。

N原子的价电子层结构为2s2p3,即有3个成单电子和一对孤电子对,以此为基础,在形成化合物时,可生成如下三种键型:

1.形成离子键

2.形成共价键

3.形成配位键

N原子同电负性较高的非金属形成化合物时,形成如下几种共价键:

⑴N原子采取sp3杂化态,形成三个共价键,保留一对孤电子对,分子构型为三角锥型,例如NH3.NF3.NCl3等。若形成四个共价单键,则分子构型为正四面体型,例如NH4+离子。

⑵N原子采取sp2杂化态,形成2个共价键和一个键,并保留有一对孤电子对,分子构型为角形,例如Cl-N=O。(N原子与Cl原子形成一个σ键和一个π键,N原子上的一对孤电子对使分子成为角形。)若没有孤电子对时,则分子构型为三角形,例如HNO3分子或NO3-离子。硝酸分子中N原子分别与三个O原子形成三个西格玛建,它的π轨道上的一对电子和两个O原子的成单π电子形成一个三中心四电子的不定域π键。在硝酸根离子中,三个O原子和中心N原子之间形成一个四中心六电子的不定域大π键。

这种结构使硝酸中N原子的表观氧化数为+5,由于存在大π键,硝酸盐在常况下是足够稳定的。

⑶N原子形成一个共价叁键,并保留有一对孤电子对,分子构型为直线形,例如N2分子和CN中N原子的结构。(N原子不形成杂化轨道)

N原子在形成单质或化合物时,常保留有孤电子对,因此这样的单质或化合物便可作为电子对给予体,向金属离子配位。例如[Cu(NH3)4]或[Tu(NH2)5]等。

现场制氮是指氮气用户自购制氮设备制氮,工业规模制氮有三类:即深冷空分制氮、变压吸附制氮和膜分离制氮。利用各空气的沸点不同使用液态空气分离法,将氧气和氮气分离。将装氮气的瓶子漆成黑色,装氧气的漆成蓝色。

实验室制备少量氮气的基本原理是用适当的氧化剂将氨或铵盐氧化,最常用的方法如下:

⑴加热亚硝酸铵的溶液:(k)NH4NO2=====N2+2H2O

⑵亚硝酸钠与氯化铵的饱和溶液相互作用:NH4Cl+NaNO2===NaCl+2H2O+N2

⑶将氨通过红热的氧化铜:2NH3+3CuO===3Cu+3H2O+N2

⑷氨水与溴水反应:8NH3+3Br2(aq)===6NH4Br+N2

⑸重铬酸铵加热分解:(NH4)2Cr2O7===N2+Cr2O3+4H2O

{6}加热叠氮化钠,使其热分解,可得到很纯的氮气,2NaN3===2Na+3N2

它是一种传统的空分技术,已有九十余年的历史,它的特点是产气量大,产品氮纯度高,无须再纯化便可直接应用于磁性材料,但它工艺流程复杂,占地面积大,基建费用高,需专门的维修力量,操作人员较多,产气慢(18~24h),它适宜于大规模工业制氮,氮气成本在0.7元/m3左右。




转载请注明:http://www.180woai.com/afhzz/1410.html


冀ICP备2021022604号-10

当前时间: